Hello! Robot motion teacher and student.


I'm a farmer. v(^o^)/ cultivate plants using cell tray

Plants are growing.
(Seeded on  Oct. 20, 2012)

   \(^0^)/    Refreshed morning.
daikon (大根) Japanese radish
spinach (法蓮草) and others
They look at the Sun.
......    ......    ......    ....   ...   ..   .



Design a motion of 4 legged robot

I have designed a motion of 4 legged robot using following document.
This document describes a motion pattern and how to move each legs, heels and body.
I have been testing effective walking of 4 legged robot for a half month.
I have gathered data and wrote the document. And I have  coded the walking program of 4 legged robot.


New house & new machine

Kurin is happy.
Because he has a new house.
Now Japan is autumn, It will be winter soon.
I wonder if his house will warm KURIN in winter.

A new cutting machine!
I use this machine to make a robot part.
It can cut materiales at a right angle.
To cut materiales at a right angle is very important to build up robots.
Hitachi  Koki      FC7FSB



The Video !! Walking a 4 legged robot. v(^.^)v

Please see a  prototype robot video.
It's a powerful  4 legged robot.

This prototype robot is used for functional verification.
It seem a simple robot, but it have many function.
Space recognition, obstacle detection,  autonomous locomotion,,,,

These function is  on my original robot platform called 'RDCS'.
I will improve these robot function  using  results of prototype robot testing.

By the way, he recognizes  his environment through his eye (xtion).



I'm a farmer. v(^o^)/

Young plants.
DAIKON (japanese radish)

other young plants
Kurin  (my family)
my teacher of 4 legged robot

New Machine & Eye

It's new machine for robot developing.

I can make original parts.

New Eye
Full HD(1920x1080) webcam
I will use a computer vision part of moving control.



I'm a farmer. (o^_^o)...

I seeded today.
Onion, broccoli, daikon radish, , ,
and tomatoes for testing of harvesting robot.



Do you know this badge?

It was about 20 years ago. This badge passed out after an incident at Universal Studios Hollywood.



Useful robot work bench.

I made a robot work bench yesterday. I could understand it is very useful.
The photo is a scene of test recognizing target.
I can move a Xbox on bench smoothly and easily.


Now status:4 legged robot. New robot bench.

I'm developing a motion realtime generation program for my 4 legged robot.
It's very difficult program for me.  I'd like to develop the program in this week.
I made a robot bench.  When I debug a motion realtime  generation program, i use this bench. It took 4 hours to make this bench.
Now I develop a prototype 4 legged robot. This bench is able to use too, when  i will develop a next robot which work in my farm and greenhouse.

 prototype 4 legged robot 
prototype 4 legged robot (front)

robot bench

robot bench



A new face

I've developed a forward  obstacle detection system of my prototype robot.
When there are obstacles that can not be over in the range of 30cm front, my robot avoid the obstacles.

Agricultural robot will be operated  in outdoor such as 'farm' and  'greenhouse'. Therefore, it is more complex than the robot to work indoors. It require dustproof, waterproof,,,. However, the production cost is $ 2,000. It is a very difficult challenge.
I developed a 1/2 scale prototype robot , and  I'm testing the robot function.
There are many improvements and issues.  (~.~), foo
I have to resolve and advance step by step.


I didn't describe how to recognize tomatoes, because it's a new method.
I will explain, when  the test of  recognizing tomatoes will finish.




Nexus 7 broken! (-.-)...

Today Suddenly,  Nexus 7 don't boot.
Google service said "It's initial failure."
Over one week, I can't develop a image processing software on Nexus 7.
It's shocked.



A new robot on 4 legs. (prototype)

Now, I'm developing a 4 legs robot. The pictures are a prototype 4 legs robot.
The prototype robot is half size model.

30cm ruler in lower side

I grow organic tomatoes in the greenhouse.  And in the greenhouse, an aisle is narrow (40cm) and uneven ground.

 There are several robot moving methods  that are wheels, caterpillar, 4 legs and others. I have considered  which is the best moving method in the 'farm' and 'greenhouse'.
I decided to develop a 4 legs robot, first of all.

私は、化学農薬などを使わないオーガニック トマトを農業ハウスで栽培しています。


The selection points are below:
(1) A function of holding on the level ( a height level requirement )
My forming robot have to move on the application which are an actuator, pruner machine,,,
Therefore a robot need to hold these applications on the level in order to exercise their capacities.
A wheel and caterpillar machin are difficult to hold on the level.
But 4 legs moving system is easy to realize  my height level requirement, nothing any other parts.
I'm going to research and to develop for putting into practical use.


I'm a farmer. (o^_^o)...

It's my tractor.
It's 20 horsepower.
Back of the tractor, greenhouse of tomatos harvesting. My tomatos are organic productions.
Next year, robot will work in greenhouse of tomatos harvesting. 



Performance testing Xtion on Raspberry Pi
Using a capturing server

Raspberry Pi is a good machine. But it don't have a capacity for 3D processing.  For this test, I use a Raspberry Pi as a capturing service (server).  And MacMini is 3D Processing service and viewing.
My test environment diagram is below.

Raspberry Piは、3D処理をするには性能がたりません。従って、Xtionを使ったcaputuring setverとして使い、空間認識などの処理をMacminiで処理します。そのテストをしました。
Micminiでpoint cloud処理をしています。さすがに瞬間的な処理です。

 Capturing Service        3D recognizing service
    Raspberry Pi                Mac MIni
----------------------------------------------------  Coordinator Layer
---------------------------------------------------- (Service Control)
             |                                |
----------------------------------------------------      Cooperative Layer
---------------------------------------------------- (Communication Control)

A performance testing was executed on RDCS.

RDCS is a robot platform based on a distributed computing model.
A lots of robot function (hardware, software) is connected by  "Cooperative Control" and "Coordinator".
"Cooperative Control" is a network communication control.  The control  connects computer , actuator, sensor and other robot device.
"Coordinator" offers robot required software. "Coordinator" integrates a lot robot software on RDCS.

This test flow is :

(1) 3D recognized service requests a data set ( image and depth ) to Capturing service.
(2) Capturing service on Raspberry Pi execute to capture image and depth.
(3) 3D recognized service receive a couple of capturing data.
(4) 3D processing and viewing

RESULT (sec)
(1)      0-1
(2)     8-10 (include the time which is Xtion initialize and terminate)
                   A Capture time is 1-2 sec.
(3)      0-1
(4)      0-1

This result means that a single robot don't have all function in it.
Therefore, it's able to develop a lightweight and low cost robot.
There are a lot of kinds wrok in farm. And my farm is large. Thus I need  a lot of robot. To do that,  I have to develop a low cost and multi-function robot.
My robots are structured by base robot and add-in function in order to realize a multi-function of robot.
And these robots have to been set up by commercialized product and builded  by component-based.

Now I'm developing a core component of robot  using 2 or 3 Raspberry Pi.
A core component of robot is structured by  6 components which are robot platform(RDCS), space recognition, obstacle detection, moving, fail-safe and recovery.
An effectivity of RDCS which I have developed was  confirmed by this testing.

ロボットプラットフォーム、障害物検知、通信、移動、フェイルセーフと回復機能を持ったシンプルなロボットを、Raspberry Piを2、3個使って作れば良いと思います。その上に、アクチュエータなどのロボットのパーツを載せればよのではないでしょうか?

                                                     3D point cloud



I got a "Nexus 7" which new android machine produced by google.

I'll use a brain of my robot.